1、麻省理工的学生用粘贴起来的1.2公里长的厕纸反复折叠13次,最终得到1.5米宽,0.76米高,8192层的纸。
2、因为只能向一个方向折叠并要求稳定不倒,学生们借助麻省理工的“无尽长廊”才实现这一壮举。
【资料图】
3、摘自《三联生活周刊》2012.2.6流言终结者这个视频他们试验了可以折11次,也没有半米厚,再去搜国家地理这个视频试验了可以折10次,一个英国女孩折了12次~如果是借助人的力量,最多只能折8次,机器也只能折9次算算就知道了。
4、如果纸的厚度达到了折叠面的一半就很难折叠了,由此可以推算,如果纸为正方形,边长为a,厚度为h,当折叠一次的时候,折叠边长不变,厚度为2倍的h,折叠两次的时候,折叠边长为原边长的二分之一,厚度变为4倍的h,就这也折叠下去,可以推出一个公式:当折叠次数n为偶数次时,折叠边长为l/20.5n,厚度变为2nh,当满足n>2/3(log2(l/h)-1)时无法折叠。
5、根据一般的纸张的状况,厚度大约为0.1mm,边长为1m时,根据以上公式,可以得出n>8.1918时无法折叠,这意味着对于厚度大约为0.1mm,边长为1m的正方形纸,只能折叠8次。
6、在考虑一下更大的纸,厚度不变,边长为1Km时,根据以上的公式,可以得出n>14.8357时无法折叠,即只能折叠14次。
7、因此,对于能折几次与l/h的值有关,如果l/h为无限大,它的对数也为无限大,自然可折叠的次数也为无限大。
8、当然这些都是从理论上得出的结论,至于如此大的纸是否可折,以及如何折就无法论证了。
9、最后一个问题,如果把一张1mm的纸折100次,可以算一下它的厚度2100×0.001m=1267650600228229401496703205.376m=1.267×1027m,月球到地球的距离为40万公里左右,粗略为4×108m,因此远远的超过了月地距离。
10、从理论上讲,如果纸张的厚度为零,可以进行无数次对折,但是,由于纸张实际厚度的存在,这种理论也就不存在,因为对折后纸张的宽度不能小于等于纸张的厚度,也就是说一张厚度为1mm的纸,对折后纸张的宽度应大于1mm。
11、所以,一张纸最多能对折多少次实际是一个变数,它取决于纸张的实际厚度与大小。
12、把一张厚度为1mm的纸对折100次,其厚度可以超过地球至月球的距离也只是一个不切合实际的数学理论推理数字。
13、按实际测算,新板大原始纸张的大小是840mm×1188mm(大一开),也就是16张A4纸大小,如果设纸张厚度为1mm,其对折1次的大小应该是840mm×593.5mm(其中0.5mm是对折边损失),对折两次的实际大小是593.5mm×419.5mm,对折三次的大小就是295.75mm×419.5mm,也就是说每次对折后的实际大小都要减去对折边的厚度损失,(当然,如果不是对折,而是裁开的话这个损失就可不计算在内了)对折四次后纸张的大小应该是207.75×295.75,从理论上推算,当纸张折到第十六次的时候(不计对折边损失)大小应该是3.28125mm×3.330625mm,但是,如果计算对折损失,只能折到第十二次。
14、无论多大的纸,都只能对折9次9次那得看是什么样的纸?最多9次。
相信通过一张纸最多对折几次这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。
本文由用户上传,如有侵权请联系删除!关键词: